skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cham, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. T cells represent a crucial component of the adaptive immune system and mediate anti-tumoral immunity as well as protection against infections, including respiratory viruses such as SARS-CoV-2. Next-generation sequencing of the T-cell receptors (TCRs) can be used to profile the T-cell repertoire. We developed a customized pipeline for Network Analysis of Immune Repertoire (NAIR) with advanced statistical methods to characterize and investigate changes in the landscape of TCR sequences. We first performed network analysis on the TCR sequence data based on sequence similarity. We then quantified the repertoire network by network properties and correlated it with clinical outcomes of interest. In addition, we identified (1) disease-specific/associated clusters and (2) shared clusters across samples based on our customized search algorithms and assessed their relationship with clinical outcomes such as recovery from COVID-19 infection. Furthermore, to identify disease-specific TCRs, we introduced a new metric that incorporates the clonal generation probability and the clonal abundance by using the Bayes factor to filter out the false positives. TCR-seq data from COVID-19 subjects and healthy donors were used to illustrate that the proposed approach to analyzing the network architecture of the immune repertoire can reveal potential disease-specific TCRs responsible for the immune response to infection. 
    more » « less
  2. The T and B cell repertoire make up the adaptive immune system and is mainly generated through somatic V(D)J gene recombination. Thus, the VJ gene usage may be a potential prognostic or predictive biomarker. However, analysis of the adaptive immune system is challenging due to the heterogeneity of the clonotypes that make up the repertoire. To address the heterogeneity of the T and B cell repertoire, we proposed a novel ensemble feature selection approach and customized statistical learning algorithm focusing on the VJ gene usage. We applied the proposed approach to T cell receptor sequences from recovered COVID-19 patients and healthy donors, as well as a group of lung cancer patients who received immunotherapy. Our approach identified distinct VJ genes used in the COVID-19 recovered patients comparing to the healthy donors and the VJ genes associated with the clinical response in the lung cancer patients. Simulation studies show that the ensemble feature selection approach outperformed other state-of-the-art feature selection methods based on both efficiency and accuracy. It consistently yielded higher stability and sensitivity with lower false discovery rates. When integrated with different classification methods, the ensemble feature selection approach had the best prediction accuracy. In conclusion, the proposed novel approach and the integration procedure is an effective feature selection technique to aid in correctly classifying different subtypes to better understand the signatures in the adaptive immune response associated with disease or the treatment in order to improve treatment strategies. 
    more » « less